

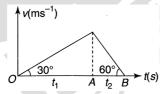
Ist & IInd Floor, Skylark Building, Near Leela Cinema, Newal Kishore Road, Hazratgani, Lucknow. Call: 7080111582, 7080111595

SAMPLE PAPER - 39

Time: 1:15 Hr. Question: 60

PHYSICS

A man moves on his motorbike with 54 km/h and then 01. takes a U-turn and continues to move with same speed. The time of U-turn is 10 s. Find the magnitude of average acceleration during U-turn


(1)0

 $(2) 3 \text{ ms}^{-2}$

(3) $1.5\sqrt{2} \text{ ms}^{-2}$

(4) none of these

- 02. A body is projected vertically downwards from A, the top of the tower reaches the ground in t₁ seconds. If it is projected upwards with same speed, it reaches the ground in t₂ seconds. At what time will it reach the ground if it is dropped from A?
 - (1) $\sqrt{t_1/t_2}$
- $(2)\sqrt{t_2/t_1}$
- (3) $\sqrt{t_1t_2}$
- 03. The velocity time graph of a body moving along a straight line is shown in figure. The ratio of the average velocities during the time t_1 and t_2 is

(1)1:1

(2)2:1

(3)3:1

(4)1:3

04. An object moving with a speed of 6.25 m/s, is decelerated at a rate given by:

$$\frac{\mathrm{dv}}{\mathrm{dt}} = -2.5\sqrt{\mathrm{v}};$$

where v is instantaneous speed. The time taken by the object, to come to rest, would be:

(1) 1 s

(2) 2 s

(3)4s

(4) 8 s

05. A fighter plane is flying horizontally at an altitude of 1.5 km with speed 720 km h⁻¹. At what angle of sight (w.r.t. horizontal) when the target is seen, should the pilot drop

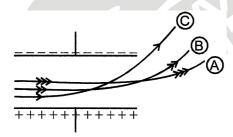
the bomb in order to attack the target? $(Take g = 10 ms^{-2})$

 $(1) \tan^{-1} \left(\frac{\sqrt{3}}{4} \right) \qquad (2) \tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$

 $(3) \tan^{-1} \left(\frac{1}{2}\right)$

- 06. For a particle performing uniform circular motion, choose the incorrect statement from the following
 - (1) Magnitude of particle velocity (speed) remains constant
 - (2) Particle velocity remains directed perpendicular to radius vector
 - (3) Direction of acceleration keeps changing as particle moves
 - (4) Magnitude of acceleration does not remain constant
- 07. The length of second's hand in a watch is 1 cm. The change in velocity of its tip in 15 seconds is

(1) Zero


(2) $\frac{\pi}{30\sqrt{2}}$ cm/s

(3) $\frac{\pi}{30}$ cm/s (4) $\frac{\pi\sqrt{2}}{30}$ cm/s

- 08. Which of the following conclusions is correct regarding a stationary body?
 - (1) No force is acting on the body
 - (2) Vector sum of forces acting on the body is zero
 - (3) The body is in vacuum
 - (4) The forces acting on the body, do not constitute a couple
- 09. For a planet moving around the sun in an elliptical orbit:
 - (1) The torque acting on planet about the sun is non-zero
 - (2) The angular momentum of planet about the sun is constant
 - (3) The areal velocity of planet about the sun is not constant
 - (4) Planet moves with a constant speed around the sun

- 10. The escape velocity from earth is $v_{\rm es}$. If the mass of a certain planet is 3 times and radius 3 times that of earth, then the escape velocity from the planet will be.
 - $(1) 3v_{ex}$
- (2) $6v_{\rm es}$ (3) $\sqrt{3} v_{\rm es}$ (4) $v_{\rm es}$
- 11. For a satellite to be geostationary, which of the following are essential conditions?
 - (1) It must always be stationed above the equator
 - (2) It must rotate from west to east
 - (3) It must be about 36000 km above the earth surface
 - (4) All the above
- 12. Two masses $m_1 = 2 \text{ kg}$ and $m_2 = 8 \text{ kg}$ infinite distance apart are initially at rest. Under their mutual gravitational altraction they start moving. When the separation between them becomes 1 m, their relative velocity of approach will be
- (1) $\sqrt{10G}$ (2) $\sqrt{20G}$ (3) $\sqrt{\frac{16G}{5}}$ (4) $\sqrt{\frac{16G}{3}}$
- The electric field at a distance $\frac{3R}{2}$ from the centre of a 13. charged conducting spherical shell of radius R is E. The electric field at a distance $\frac{R}{2}$ from the centre of the sphere

 - (1) Zero
- (2)E
- (3) $\frac{E}{2}$
- (4) 2E
- 14. Three particles are projected in a uniform electric field with same velocity perpendicular to the field as shown. Which particle has highest charge to mass ratio?

- (1)A
- (2)B
- (3)C
- (4) All have same charge to mass ratio
- 15. The breakdown electric field of air is about 2×10^6 V/m. The maximum charge that can be placed on a sphere of diameter 10 cm is
 - $(1) 2 \times 10^{-4} \text{ C}$
 - $(2) 5.6 \times 10^{-7} \text{ C}$
 - $(3) 5.6 \times 10^{-2} \text{ C}$
 - $(4) 2 \times 10^{+2} \text{ C}$

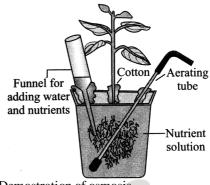
CHEMISTRY

- 16 The flask A and B of equal size contain 2 g of H₂ and 2 g of N_2 respectively at the same temperature. The number of molecules in flask A is
 - (1) same as those in flask B
 - (2) less than those in flask B
 - (3) greater than those in flask B
 - (4) exactly half than those in flask B
- 17. Simplest formula of compound containing 50% of element X (at. mass 10) and 50% of element Y (at. mass 20) is
 - (1)XY
- $(2) X_2 Y$
- (3)XY₂
- $(4) X_2 Y_3$
- 18. $2H_2 + O_2 \rightarrow 2H_2O$
 - 2g H₂ and 1 O₂ react to form H₂O
 - (1)3.0g
- (2) 1.125 g
- (3)4.5 g
- (4) 2.50 g
- 19. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
 - (1)0.875 M
- (2) 1.00 M
- (3) 1.25 M
- (4) 2.5 M
- 20. 8g of NaOH is dissolved in 18g of H₂O. Mole fraction of NaOH in solution and molality (in mol kg⁻¹) of the solutions respectively are
 - (1) 0.167, 11.11
- (2)0.2, 22.20
- (3) 0.2, 11.11
- (4) 0.167, 22.20
- 21. The correct decreasing order for acid strength is
 - (1) NCCH₂COOH > O₂NCH₂COOH > FCH₂COOH > CICH,COOH
 - (2) FCH₂COOH > NCCH₂COOH > O₂NCH₂COOH > CICH,COOH
 - (3) O₂NCH₂COOH > FCH₂COOH > NCCH₂COOH > CICH,COOH
 - (4) O₂NCH₂COOH > NCCH₂COOH > FCH₂COOH > CICH,COOH
- 22. In which of the following molecule, the group attached to benzene does not show any type of resonance effect?

- The inductive effects of the group -CH₃, -COO⁻,
 - -Br, $-NH_3$ respectively are
 - (1) + I, -I, +I, +I
- (2)-I, +I, -I, +I
- (3)-I,-I,+I,+I
- (4) + I, +I, -I, -I

- 24. The stability of given free radicals in decreasing order is

 - (i) $CH_3 CH_2$ (ii) $CH_3 CH CH_3$
 - (iii)
- (1) III > IV > I > II
- (2) I > II > III > IV
- (3) III > II > IV > I
- (4) III > II > IV
- 25. The number of cyclic structural isomers are possible for molecular formula C₄H₆?
 - (1)3
- (3)5
- (4)6
- 26. Which of the following structure is/are correct



- (1) Only (I)
- (2) Only (II)
- (3) II and III
- (4) All (I), (II) and (III)
- 27. Condition for ionic bond.
 - (1) One atom have low I.P. other have high I.P.
 - (2) One atom have low I.P. other have low electron affinity
 - (3) One atom have high I.P. other have high electron gain enthalpy
 - (4) One atom have low I.P. other have more negative electron gain enthalpy.
- 28. Which of the following not an actinoid
 - (1) Terbium (Z=65)
 - (2) Thorium (Z=90)
 - (3) Berkelium (Z=97)
 - (4) Nobelium (102)
- 29. Which set of atomic number represent representative elements.
 - (1) 25, 30, 45, 42
 - (2) 8, 15, 18, 13
 - (3) 102, 92, 96, 100
 - (4)78, 16, 63, 12
- 30. The first ionisation enthalpy values of the III period elements Na, Mg, Si are respectively 496, 737 and 786 KJ/ mole. The first ΔHi value for Al will be more close to
 - (1)496
- (2)760
- (3)786
- (4)575

BOTANY

31. The following figure shows the typical set-up for

- (1) Demostration of osmosis
- (2) Thistle funnel experiment
- (3) Nutrient solution culture
- (4) Sachs technique for water less culture
- 32. Match the column I and column II and select the correct combination.

	Column-I	Column-II	
A.	Carbohydrate	i.	Iron
	translocation		
В.	Component of vitamins	ii.	Phosphorus
	(biotin and thiamine)		
C.	Synthesis of cell wall	iii.	Boron
D.	Component of	iv.	Sulphur
	cytochromes		
E.	Phosphorylation reactions	v.	Calcium

- (1) A-v, B-iv, C-ii, D-iii, E-i
- (2) A-iii, B-iv, C-v, D-i, E-ii
- (3) A-v, B-iv, C-ii, D-i, E-iii
- (4) A-iii, B-i, C-v, D-iv, E-ii
- 33. The prominent symptom of manganese toxicity is the appearance of
 - (1) Chlorotic veins surrounded by black spots
 - (2) Chlorotic veins surrounded by brown spots
 - (3) Brown spots surrounded by chlorotic veins
 - (4) Black spots surrounded by chlorotic veins
- 34. Essential elements are often supplied to the crop plants through fertilizers. The components of fertilizers are
 - (1) Micro-nutrients (Cu, Zn, Fe, Mn etc.)
 - (2) Macro-nutrients (N, P, K, S etc.)
 - (3) Both (1) and (2)
 - (4) Na, Se, Si, Co
- 35. Find out the incorrect statemnt.
 - (1) Azotobacter and Beijernickia are aerobic, free living nitrogen fixing micorbes
 - (2) Rhodospirillum and Bacilus polymyxa are anaerobic, free-living bacteria
 - (3) Rhizobium and Frankia are symbiotic N₂ fixers in
 - (4) Cyanobacteria (Nostoc and Anabaena) are free living N₂ fixers.

- 36. Plant (internal) factor(s) that affect transpiration include(s)
 - (1) Number and distribution of stomata
 - (2) Parcent of open stomata
 - (3) Canopy structure and water status of the plant
 - (4) All of the above
- 37. A first action spectrum of photosynthesis was described by
 - (1) Julius von Sachs
 - (2) Cornelius van Niel
 - (3) T.W. Engelmann
 - (4) Jan Ingenhousz
- 38. Match the column I and II, and choose the correct combination from the options given

Column-I

Column-II

A. Chlorophyll a

1. Yellow

B. Chlorophyll b

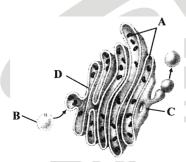
2. Yellow green

C. Carotenoids

3. Yellow to yellow orange

D. Xanthophylls

4. Bright or blue green


(1) 1-A, 3-B, 1-C, 2-D

(2) 3-A, 4-B, 1-C, 2-D

(3) 4-A, 2-B, 3-C, 1-D

(4) 2-A, 1-B, 4-C, 3-D

- 39. Polyribosomes are aggregation of
 - (1) ribosomes and rRNA
 - (2) peroxisomes
 - (3) several ribosomes held together by a string of mRNA
 - (4) tRNA
- 40. Select the option with correct lebelling of given structure of Golgi apparatus.

- (1) A-Cisternae; B-Vesicle; C-trans face; D-cis face
- (2) A-Cisternae; B-Vesicle; C-cis face; D-trans face
- (3) A-Vesicle; B-Cisternae; C-cis face; D-trans face
- (4) A-Tubules; B-Vesicle; C-trans face; D-cis face
- 41. In chloroplasts, chlorophyll is present in the
 - (1) outer membrane
- (2) inner membrane
- (3) thylakoids
- (4) stroma
- 42. One cycle of cell division in human cells takes 24 hours. Which phase occupies the maximum part of cell cycle?
 - (1) Mitotic phase
- (2) Meiotic phase
- (3) Interphase
- (4) Cytokinesis

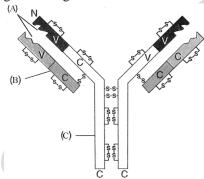
43. Match Column–I with Column–II and select the correct option from the codes given below.

	Column-I		Column-II
A.	V-shaped at anaphase	(i)	Acrocentric chromosome
	anapnase		
B.	L-shaped at	(ii)	Metacentric
	anaphase		chromosome
C.	J-shaped at anaphase	(iii)	Telocentric chromosome
D	I-shaped at	(iv)	Sub-metacentric
	anaphase		chromosome

- (1) A-(iv); B-(ii); C-(i); D-(iii)
- (2) A-(ii); B-(iv); C-(i); D-(iii)
- (3) A-(ii); B-(iv); C-(iii); D-(i)
- (4) A-(iv); B-(iii); C-(ii); D-(i)
- 44. Which of the following shows the correct sequence of the given mitotic stages?
 - A-Anaphase; B-Metaphase; C-Prophase; D-Telophase
 - $(1) D \rightarrow C \rightarrow B \rightarrow A$
- $(2) C \rightarrow B \rightarrow D \rightarrow A$
- $(3) B \rightarrow A \rightarrow C \rightarrow D$
- $(4) C \rightarrow B \rightarrow A \rightarrow D$
- 45. Meiosis consists of
 - (1) Two cell divisions without any DNA replication
 - (2) two cell divisions in which chromosome number is reduced to half
 - (3) two cell divisions with only two rounds of chromosome replication
 - (4) a single cell division with chromosome replication

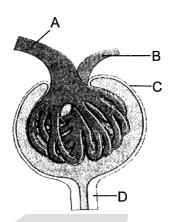
ZOOLOGY

- 46. Which type of barriers do saliva in the mouth and tears from the eyes belong?
 - (1) Cytokine barriers
 - (2) Cellular barriers
 - (3) Physiological barriers
 - (4) Physical barriers
- 47. Grafted kidney may be rejected in a patient due to
 - (1) humoral immune response
 - (2) cell-mediated immune response
 - (3) passive immune response
 - (4) Innate immune response
- 48. Which one of the following statements is correct with respect to immunity?
 - (1) Preformed antibodies need to be injected to treet the bite by a viper snake.
 - (2) The antibodies against smallpox pathogen are produced by T-lymphocytes
 - (3) Antibodies are protein molecules, each of which has four light chains
 - (4) Rejection of a kidney graft is the function of B-lymphocytes


- 49. Primary lymphoid organs among the following are
 - (1) bone marrow
- (2) thymus
- (3) Both (1) and (2)
- (4) lobules of thymus
- 50. Match Column-II with Column-II:

	Column-I		Colum n-II
A.	Cardiac arrest	i.	Heart not pumping blood
			effectively
B.	Heart failure	ii.	Heart muscle is suddenly
			damaged
C.	Heart attack	iii.	Acute chest pain
D.	Angina	iv.	Heart stops beating

- (1)(A) = i;(B) = ii;(C) = iii;(D) = iv
- (2) (A) = iv; (B) = ii; (C) = i; (D) = iii
- (3) (A) = iv; (B) = i; (C) = ii; (D) = iii
- (4) (A) = ii; (B) = iii; (C) = i; (D) = iv
- 51. Read the following statements (A-D):
 - (A) Artery always carry blood from heart to the organs
 - (B) Valves are absent in the arteries
 - (C) Artery always carry oxygenated blood
 - (D) Lumen of artery is wide


How many statements are wrong?

- (1) Three
- (2) Four
- (3) one
- (4) Two
- 52. Recognise the figure and find the correct match.

- (1) (A)-Antigen binding site; (B)-Light chain; (C)-Heavy chain
- (2) (A)-Light chain; (B)-Heavy chain; (C)-Antigen binding site
- (3) (A)-Heavy chain; (B)-Light chain; (C)-Antigen binding site
- (4) (A)-Heavy chain; (B)-Antigen binding site; (C)-Light chain
- 53. Filtration of the blood takes place at:
 - (1)PCT
 - (2)DCT
 - (3) Collecting ducts
 - (4) Malpighian body
- The condition of accumulation of urea in the blood is 54. termed as:
 - (1) Renal calculi
- (2) Glomerulonephritis
- (3) Uremia
- (4) Ketonuria

- 55. Osmolarity of inner medulla of kidney is:
 - (1) 300-600 mosmol/L
- (2) 600-800 mosmol/L
- (3) 900-1200 mosmol/L (4) 600-1200 mosmol/L
- 56. The given figure represents the Malpighian body. Identify the labelled parts A to D:

- (1) A-Efferent arteriole, B-Afferent arteriole, C-Bowman's capsule, D-Proximal convoluted tubule
- (2) A-Afferent arteriole, B-Efferent arteriole, C-Renal corpuscle, D-Proximal convoluted tubule
- (3) A-Afferent arteriole, B-Efferent arteriole, C-Bowman's capsule, D-Proximal convoluted tubule
- (4) A-Afferent arteriole, B-Efferent arteriole, C-Bowman's capsule, D-Distal convoluted tubule
- 57. Following are the steps of dialysis:
 - A. Blood is passed into a vein
 - B. Blood is mixed with heparin
 - C. Blood is mixed with anti-heparin
 - D. Blood is drained from convenient artery
 - E. Blood is passed through a coiled and porous cellophane tube bathing in dialysis fluid.
 - F. Removal of nitrogenous wastes from blood.

The correct sequence of steps is:

- $(1)A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F$
- $(2)F \rightarrow C \rightarrow E \rightarrow B \rightarrow A \rightarrow D$
- $(3) D \rightarrow B \rightarrow E \rightarrow F \rightarrow C \rightarrow A$
- $(4) D \rightarrow C \rightarrow E \rightarrow F \rightarrow B \rightarrow A$
- 58. If amount of water used for elimination of NH₃, urea and uric acid is X, Y and Z respectively, then which is correct?
 - (1) X > Y > Z
- (2)X>Z>Y
- (3) X < Y < Z
- (4) Y > Z > X
- 59. Which of the following sets defines the movement of NaCl in medulla starting from loop of Henle? [Ascending limb of loop of Henle -P, Descending limb of loop of Henle –Q, Ascending limb of vasa recta – R, Descending limb of vasa recta – S and interstitium of medulla – T]
 - $(1) P \rightarrow Q \rightarrow S \rightarrow R \rightarrow T$
 - $(2) Q \rightarrow S \rightarrow T \rightarrow R$
 - $(3) P \rightarrow S \rightarrow R \rightarrow T$
 - $(4) P \rightarrow R \rightarrow S \rightarrow T$

- 60. What are columns of Bertini (or Renal columns)?
 - (1) Extensions of medulla in cortex
 - (2) Extensions of cortex in pelvis
 - (3) Extensions of medulla in pelvis
 - (4) Extensions of cortex in medulla

